3.672 \(\int \frac{(d+e x)^{5/2} (f+g x)^3}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=239 \[ -\frac{16 g^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (2 a e^2 g-c d (3 e f-d g)\right )}{3 c^4 d^4 e \sqrt{d+e x}}-\frac{4 g \sqrt{d+e x} (f+g x)^2}{c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac{16 g^3 \sqrt{d+e x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c^3 d^3 e}-\frac{2 (d+e x)^{3/2} (f+g x)^3}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[Out]

(-2*(d + e*x)^(3/2)*(f + g*x)^3)/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) - (4*g*Sqrt[d + e*x]*(f
 + g*x)^2)/(c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (16*g^2*(2*a*e^2*g - c*d*(3*e*f - d*g))*Sqr
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*c^4*d^4*e*Sqrt[d + e*x]) + (16*g^3*Sqrt[d + e*x]*Sqrt[a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2])/(3*c^3*d^3*e)

________________________________________________________________________________________

Rubi [A]  time = 0.279648, antiderivative size = 239, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065, Rules used = {866, 794, 648} \[ -\frac{16 g^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (2 a e^2 g-c d (3 e f-d g)\right )}{3 c^4 d^4 e \sqrt{d+e x}}-\frac{4 g \sqrt{d+e x} (f+g x)^2}{c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac{16 g^3 \sqrt{d+e x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c^3 d^3 e}-\frac{2 (d+e x)^{3/2} (f+g x)^3}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^(5/2)*(f + g*x)^3)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2)*(f + g*x)^3)/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) - (4*g*Sqrt[d + e*x]*(f
 + g*x)^2)/(c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (16*g^2*(2*a*e^2*g - c*d*(3*e*f - d*g))*Sqr
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*c^4*d^4*e*Sqrt[d + e*x]) + (16*g^3*Sqrt[d + e*x]*Sqrt[a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2])/(3*c^3*d^3*e)

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e*(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] - Dist[(e*g*n)/(c*(p + 1)), I
nt[(d + e*x)^(m - 1)*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] &
& LtQ[p, -1] && GtQ[n, 0]

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{5/2} (f+g x)^3}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac{2 (d+e x)^{3/2} (f+g x)^3}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{(2 g) \int \frac{(d+e x)^{3/2} (f+g x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{c d}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^3}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{4 g \sqrt{d+e x} (f+g x)^2}{c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{\left (8 g^2\right ) \int \frac{\sqrt{d+e x} (f+g x)}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c^2 d^2}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^3}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{4 g \sqrt{d+e x} (f+g x)^2}{c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{16 g^3 \sqrt{d+e x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^3 d^3 e}-\frac{\left (8 g^2 \left (2 a e^2 g-c d (3 e f-d g)\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 c^3 d^3 e}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^3}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{4 g \sqrt{d+e x} (f+g x)^2}{c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{16 g^2 \left (2 a e^2 g-c d (3 e f-d g)\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^4 d^4 e \sqrt{d+e x}}+\frac{16 g^3 \sqrt{d+e x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c^3 d^3 e}\\ \end{align*}

Mathematica [A]  time = 0.113385, size = 131, normalized size = 0.55 \[ \frac{2 (d+e x)^{3/2} \left (24 a^2 c d e^2 g^2 (f-g x)-16 a^3 e^3 g^3-6 a c^2 d^2 e g \left (f^2-6 f g x+g^2 x^2\right )+c^3 d^3 \left (-9 f^2 g x-f^3+9 f g^2 x^2+g^3 x^3\right )\right )}{3 c^4 d^4 ((d+e x) (a e+c d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^(5/2)*(f + g*x)^3)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(2*(d + e*x)^(3/2)*(-16*a^3*e^3*g^3 + 24*a^2*c*d*e^2*g^2*(f - g*x) - 6*a*c^2*d^2*e*g*(f^2 - 6*f*g*x + g^2*x^2)
 + c^3*d^3*(-f^3 - 9*f^2*g*x + 9*f*g^2*x^2 + g^3*x^3)))/(3*c^4*d^4*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 187, normalized size = 0.8 \begin{align*} -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( -{g}^{3}{x}^{3}{c}^{3}{d}^{3}+6\,a{c}^{2}{d}^{2}e{g}^{3}{x}^{2}-9\,{c}^{3}{d}^{3}f{g}^{2}{x}^{2}+24\,{a}^{2}cd{e}^{2}{g}^{3}x-36\,a{c}^{2}{d}^{2}ef{g}^{2}x+9\,{c}^{3}{d}^{3}{f}^{2}gx+16\,{a}^{3}{e}^{3}{g}^{3}-24\,{a}^{2}cd{e}^{2}f{g}^{2}+6\,a{c}^{2}{d}^{2}e{f}^{2}g+{f}^{3}{c}^{3}{d}^{3} \right ) }{3\,{c}^{4}{d}^{4}} \left ( ex+d \right ) ^{{\frac{5}{2}}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)*(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

-2/3*(c*d*x+a*e)*(-c^3*d^3*g^3*x^3+6*a*c^2*d^2*e*g^3*x^2-9*c^3*d^3*f*g^2*x^2+24*a^2*c*d*e^2*g^3*x-36*a*c^2*d^2
*e*f*g^2*x+9*c^3*d^3*f^2*g*x+16*a^3*e^3*g^3-24*a^2*c*d*e^2*f*g^2+6*a*c^2*d^2*e*f^2*g+c^3*d^3*f^3)*(e*x+d)^(5/2
)/c^4/d^4/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(5/2)

________________________________________________________________________________________

Maxima [A]  time = 1.29584, size = 296, normalized size = 1.24 \begin{align*} -\frac{2 \,{\left (3 \, c d x + 2 \, a e\right )} f^{2} g}{{\left (c^{3} d^{3} x + a c^{2} d^{2} e\right )} \sqrt{c d x + a e}} + \frac{2 \,{\left (3 \, c^{2} d^{2} x^{2} + 12 \, a c d e x + 8 \, a^{2} e^{2}\right )} f g^{2}}{{\left (c^{4} d^{4} x + a c^{3} d^{3} e\right )} \sqrt{c d x + a e}} + \frac{2 \,{\left (c^{3} d^{3} x^{3} - 6 \, a c^{2} d^{2} e x^{2} - 24 \, a^{2} c d e^{2} x - 16 \, a^{3} e^{3}\right )} g^{3}}{3 \,{\left (c^{5} d^{5} x + a c^{4} d^{4} e\right )} \sqrt{c d x + a e}} - \frac{2 \, f^{3}}{3 \,{\left (c^{2} d^{2} x + a c d e\right )} \sqrt{c d x + a e}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)*(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

-2*(3*c*d*x + 2*a*e)*f^2*g/((c^3*d^3*x + a*c^2*d^2*e)*sqrt(c*d*x + a*e)) + 2*(3*c^2*d^2*x^2 + 12*a*c*d*e*x + 8
*a^2*e^2)*f*g^2/((c^4*d^4*x + a*c^3*d^3*e)*sqrt(c*d*x + a*e)) + 2/3*(c^3*d^3*x^3 - 6*a*c^2*d^2*e*x^2 - 24*a^2*
c*d*e^2*x - 16*a^3*e^3)*g^3/((c^5*d^5*x + a*c^4*d^4*e)*sqrt(c*d*x + a*e)) - 2/3*f^3/((c^2*d^2*x + a*c*d*e)*sqr
t(c*d*x + a*e))

________________________________________________________________________________________

Fricas [A]  time = 1.65549, size = 508, normalized size = 2.13 \begin{align*} \frac{2 \,{\left (c^{3} d^{3} g^{3} x^{3} - c^{3} d^{3} f^{3} - 6 \, a c^{2} d^{2} e f^{2} g + 24 \, a^{2} c d e^{2} f g^{2} - 16 \, a^{3} e^{3} g^{3} + 3 \,{\left (3 \, c^{3} d^{3} f g^{2} - 2 \, a c^{2} d^{2} e g^{3}\right )} x^{2} - 3 \,{\left (3 \, c^{3} d^{3} f^{2} g - 12 \, a c^{2} d^{2} e f g^{2} + 8 \, a^{2} c d e^{2} g^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}}{3 \,{\left (c^{6} d^{6} e x^{3} + a^{2} c^{4} d^{5} e^{2} +{\left (c^{6} d^{7} + 2 \, a c^{5} d^{5} e^{2}\right )} x^{2} +{\left (2 \, a c^{5} d^{6} e + a^{2} c^{4} d^{4} e^{3}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)*(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

2/3*(c^3*d^3*g^3*x^3 - c^3*d^3*f^3 - 6*a*c^2*d^2*e*f^2*g + 24*a^2*c*d*e^2*f*g^2 - 16*a^3*e^3*g^3 + 3*(3*c^3*d^
3*f*g^2 - 2*a*c^2*d^2*e*g^3)*x^2 - 3*(3*c^3*d^3*f^2*g - 12*a*c^2*d^2*e*f*g^2 + 8*a^2*c*d*e^2*g^3)*x)*sqrt(c*d*
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^6*d^6*e*x^3 + a^2*c^4*d^5*e^2 + (c^6*d^7 + 2*a*c^5*d^5*e^2
)*x^2 + (2*a*c^5*d^6*e + a^2*c^4*d^4*e^3)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)*(g*x+f)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)*(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x